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Abstract 
 
This investigation is concerned with the topology optimization using displacement-based nonconforming finite ele-

ments for problems involving incompressible materials. Although the topology optimization with mixed displacement-
pressure elements was performed, a displacement-based approach can be an efficient alternative because it interpolates 
displacement only. After demonstrating the Poisson locking-free characteristics of the employed nonconforming finite 
elements by a simple patch test, the developed method is applied to solve the design problems of mounts involving 
incompressible solid or fluid. The numerical performance of the nonconforming elements in topology optimization was 
examined also with existing incompressible problems. 
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1. Introduction 

Most topology optimization techniques have been 
based on the displacement-based formulation because 
of simplicity in the formulation. However, standard 
displacement-based finite elements exhibit the so-
called locking phenomenon when they are applied to 
the analysis of an incompressible material. Therefore, 
the topology optimization of a rubber-like incom-
pressible material is also difficult with these elements. 
A remedy to such problems is to employ mixed finite 
elements. Sigmund and Clausen [1] used a mixed 
displacement-pressure formulation and assigned in-
compressibility to void elements to deal with topol-
ogy optimization with pressure loads. Bruggi and 
Venini [2] presented a mixed formulation based on 
the triangular elements of Johnson and Mercier [3]. 

This investigation used element-wise linear and glob-
ally discontinuous displacement approximation and 
sub-element-wise linear stress approximation to pass 
the continuous and discrete inf-sup condition. 

As an alternative approach to deal with the locking 
problem without resorting to a mixed formulation, 
one can use nonconforming elements. Brenner and 
Sung [4] approximated displacement field by triangu-
lar nonconforming elements with 1P  basis functions 
of Crouzeix and Raviart [5]. Triangular nonconform-
ing elements are known to provide an efficient finite 
element space preserving discrete zero-divergence 
characteristics at each element. Rannacher and Turek 
[6] introduced rectangular nonconforming elements 
by rotating standard bilinear basis functions and 
showed that their nonconforming elements converge 
with optimal orders for uniform meshes. However, 
their elements lose optimality for quadrilateral parti-
tions of an analysis domain. Douglas et al. [7] modi-
fied the element by Rannacher and Turek [6] by im-
posing orthogonalities along element edges and pre-
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sented nonconforming elements for quadrilaterals. 
They also applied nonconforming elements to solve 
the Maxwell [8] and Helmholtz equations [9]. Non-
conforming elements were also used to solve wave 
propagation problems in viscoelastic media [10]. Lee 
et al. [11] showed the locking-free property of non-
conforming elements in plane linear elasticity prob-
lems. 

In topology optimization, nonconforming elements 
were used to suppress checkerboard patterns [12, 13]. 
Since the solution continuity of nonconforming ele-
ments is guaranteed only at midpoints of element 
edges in two-dimensional problems and at centers of 
element faces in three-dimensional problems, void 
elements of checkerboard patterns do not suffer from 
deformation constraints by diagonally positioned 
solid elements. In Reference [12], the homogenized 
stiffness of a checkerboard patch of nonconforming 
elements was shown to be merely twice the stiffness 
of void elements, while that of the conforming bilin-
ear element is almost half of solid elements. 

We consider nonconforming elements of Douglas 
et al. [7] and Lee et al. [11] to solve topology optimi-
zation problems of incompressible materials and in-
vestigate their numerical stability. Because the em-
ployed nonconforming elements are based on a dis-
placement formulation, the standard formulation used 
for compressible materials can be directly used for 
incompressible problems. Furthermore, field consis-
tency does not need to be considered. If a mixed for-
mulation is used, on the other hand, one must satisfy 
field-consistency in displacement and stress interpola-
tions [14]. Sigmund and Clausen [1] used linear dis-
placement and constant pressure approximations and 
obtained stable solutions, but quadrilateral displace-
ment and linear pressure approximation needs to be 
employed to obtain fully-stable solutions.  

As done in Reference [1], the bulk and shear 
moduli are interpolated to represent material phases. 
In this work, the necessary and sufficient conditions 
for convergence of the nonconforming element are 
checked by the patch test, and the locking-free prop-
erty of the element is examined with a test problem. 
More rigorous analysis may be found in References 
[7, 11]. For the topology optimization with noncon-
forming elements, the design of rubber-based mounts 
is considered. The underlying locking-free stable 
solution convergence of the nonconforming elements 
is tested also with existing incompressible design 
problems. 

2. Characteristics of nonconforming finite ele-
ments 

In this research, we adopt the quadrilateral noncon-
forming elements introduced by Lee et al. [11] whose 
shape functions are given as 

  (1) 
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In Eq. (1), ξ  and η  denote element coordinates 

( 1 , 1ξ η− ≤ ≤ ). Thus, the finite element space of the 
nonconforming element is 
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If a field variable eu  in the nonconforming quad- 

rilateral element e is approximated as 
e i i

i
u N U=∑   

( iN : shape function), the i-th degree of freedom iU  
( 1, 2,3, 4i = ) denotes the average value of eu  on the 
i-th edge: 
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Thus the continuity of the nonconforming elements 

along their interface is imposed by 
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Fig. 1. A region discretized by 4 3×  nonconforming ele-
ments: (a) node distribution and (b) shape functions 
associated with node 16. 
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where 

jkΓ  denotes the element edge shared by ele-
ment j and element k. Note that the degree of freedom 

iU  can be interpreted as the displacement at the mid-
point of the corresponding edge. Because the continu-
ity of nonconforming finite element solutions is guar-
anteed only at the midpoints of element edges, the 
continuity of the solution across interfaces between 
elements is released. 

Fig. 1(a) illustrates a 4 3×  mesh consisting of 
nonconforming elements. The elements have nodes 
located on the centers of element edges. Fig. 1(b) is a 
three-dimensional plot of the u field where 0iU =  
( 1, 2,...31, 16i i= ≠ ) and 16 1U = . Note that along 
the edges of nodes 11, 12, 15, 17, 20 and 21, the u 
field is not continuous. 

As the finite element mesh is refined, each element 
will approach a state of constant strain. To check the 
solution convergence of the nonconforming elements, 

let us consider a patch of nonconforming elements 
under the minimum number of displacement con-
straints to remove rigid body motions. If a patch of 
elements subject to nodal forces corresponding to a 
constant strain field can represent a state of constant 
strain, the finite elements are regarded to pass the 
convergence patch test and have at least ( )o h  con-
vergence for stresses even though the convergence is 
not monotonic (see, e.g., Reference [15]). Displace-
ment continuity (or so-called compatibility) is not a 
necessary condition for the solution convergence of 
displacement-based finite elements. 

For the patch test of the nonconforming elements, 
the following membrane problem is considered in a 
nonconforming finite element space 

  (6a) 
 
with  
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n
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∂

on tΓ ,  (6b) 

 
where T , k  and u  denote the initial tension, the 
elastic foundation stiffness, and the displacement, 
respectively. In Eq. (6b), n  denotes the direction 
normal to the boundary tΓ . For the patch test, it is 
noted that a patch of elements has a constant strain 
field if q ku= . In this case, the Galerkin approxima-
tion of Eq. (6a) becomes  
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which can be rewritten as a summation of integrations 
over each element domain eΩ : 
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Because the finite element solution within each 
element is expressed in the space given by (3) having 
a space of a constant strain, the first term in Eq. (9) 
can represent a solution corresponding to a constant 
strain. Thus, the second term in Eq. (9) that denotes 
boundary forces resulting from displacement discon-
tinuities along element edges must vanish or be ig-
nored. Obviously, in case of conforming elements, the 
element boundary forces do not occur because 

j kn n= −  and 
j kv v=  on 

jkΓ . Since the traction 
along element edge 

jkΓ  is constant, the element 
boundary force term in Eq. (9) becomes 
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0= .  (10b) 
 
Eq. (10b) is due to Eq. (5). Accordingly, only the 

first term in Eq. (9) remains as the system equation. 
Therefore, the present nonconforming elements are 
shown to pass the patch test. 

Now let us investigate how the nonconforming 
elements work in problems involving incompressible 
materials. The main difficulty of analyzing incom-
pressible materials with displacement-based finite 
elements lies in inaccuracy in the prediction of mean 
stress or pressure. To demonstrate the locking-free 
property of the nonconforming element, its solution 
behavior will be examined when the volumetric part 
of strain becomes zero. The volumetric part of strain 

vε  is related to mean pressure p  as  
 

( )v x y zp K Kε ε ε ε= = + + ,  (11) 

 
where K  is the bulk modulus of material and 

xε ,
yε  and 

zε  are normal strains. For plain strain 
and three-dimensional problems,  

 

( )( )2 1 1 2
EK

ν ν
=

+ −
 and 

( )3 1 2
EK
ν

=
−

,  (12) 

 
Respectively, where E  is Young’s modulus and 

ν  is Poisson’s ratio. For mean pressure p to be finite 
in the limit of incompressibility ( 0.5ν = , i.e., 
K →∞  ), 

vε  must be zero. 
 

Fixed

Element A

 
(a) 

 
Fig. 2. A Poisson locking test problem: (a) a structure under 
uniform tensile load, and (b) boundary condition imposed on 
a nonconforming element (element A). 

 
Fig. 2(a) describes a problem used to test the lock-

ing-free property of the nonconforming element. One 
end of a structure in Fig. 2(a) is fixed while the other 
end is subject to a uniform tensile load. The structure 
is discretized by the rectangular nonconforming ele-
ments, but the following analysis equally holds for 
general quadrilateral elements. For element A having 
nodes i, j, k and l shown in Fig. 2(a), we can express 
the volumetric strain 

vε  as 
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where 

,iUα
 denotes the displacement component in 

the α −direction ( ,x yα = ) of the i-th node. Impos-
ing the constraint of zero volumetric strain to Eq. (13) 
yields  
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Because 
, , 0x l y lU U= =  in element A due to the 

fixed boundary condition (see Fig. 2(b)), Eqs. (14) 
result in three independent linear equations with six 
nodal values. Therefore, the structure in Fig. 2(a) 
discretized by the nonconforming elements can de-
form freely under an external tensile load even in the 
limit of incompressibility. This analysis shows that 
the Poisson locking does not occur in the noncon-
forming element.  

The convergence of the present nonconforming 
elements can be found in Reference [11]: 

 
2,1 |||||||| uChuu hh ≤− ,  (15) 

 
where u  and 

hu  denote the exact solution and the 
discretized solution in the nonconforming finite ele-
ment space, respectively and h  is the characteristic 
size of elements. In Eq. (15), the broken (energy) 
norm 

h,1|||| ⋅  excludes the effect of discontinuities 
along element boundaries (see [11] for the mathe-
matical proof of Eq. (15)). Thus the analysis accuracy 
of nonconforming elements is dependent on the mesh 
density of topology optimization. Because the non-
conforming elements have the Poisson-locking free 
property, the constant C in Eq. (15) is independent of 
material properties.  

Fig. 3 shows the convergence of nonconforming 
elements; tip displacements of a cantilever structure 
whose free end is under a unit vertical force are plot-
ted with respect to the number of elements. In the Fig., 
the convergence of mixed finite elements employing 
displacements and pressure as field variables (u-p 
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Fig. 3. Convergences of nonconforming elements and mixed 
finite elements for the tip displacement of a cantilever struc-
ture (a rectangular domain with 4m 1m×  assuming plane 
strain condition and incompressible material properties 
( 10kPaE =  and 0.5ν = )). 

formulation) is also plotted (4-node solid elements of 
ANSYS [16] are used for the calculation.) Although 
the accuracy of nonconforming elements in low mesh 
density is worse than that of mixed finite elements, 
the stable convergence expressed in Eq. (15) can be 
ascertained; the order of convergences for both cases 
are the same.  

Fig. 4 illustrates the deformed shape of noncon-
forming elements for the simple cantilever problem 
for Fig. 3. Note that the displacement continuity is 
preserved only at midpoints of element edges. Thus 
special attention needs to be paid when a displace-
ment is used for the performance measure of optimi-
zation such as in compliant mechanism design prob-
lems. The displacements at the vertices of elements 
should not be used as performance measures of opti-
mization. 
 

3. Topology optimization formulation 

The weak form of the governing equation for an 
elasticity problem is 

 

0
t

ij ijkl kl i i

i i

C d u f d

u t d

δε ε δ
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Ω Ω
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where 

ijε  is the strain tensor, 
ijklC , the elasticity 

tensor, iu , the displacement component, if , the 
body force component within the analysis domain Ω , 
and it , the prescribed traction on the boundary tΓ . 
After discretization with the nonconforming finite 
elements, the weak form in Eq. (16) results in the 
following system of matrix equations:  

 
=KU F ,  (17) 

 
where the stiffness matrix K  and the force vector 
F  are given as 

 
 

 
Fig. 4. Deformed shape of nonconforming finite elements. 
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T e

e
d

Ω

= Ω∑ ∫K B C B ,  (18) 

e

T

e
d

Ω

= Ω∑ ∫F N f .  (19) 

 
In Eq. (18), B  is the strain-displacement matrix 

consisting of derivatives of nonconforming shape 
functions N , and f  is the body force vector. The 
elasticity matrix eC  will be interpolated as a func-
tion of a design variable defined in each and every 
element. Note that the solution vector U  in Eq. (17) 
consists of only displacement degrees of freedom. 

Optimization formulation is given as 
 
Minimize

ρ

Tf = F U ,  (20a) 

 
subject to the volume constraint: 

 

solid

e e
e

v
g

V

ρ
β= ≤

∑
,  (20b) 

 
with 

 
0 1eρ≤ ≤ , 

 
where 

eρ  is a density design variable for an incom-
pressible solid material. In Eqs. (20), ev  is the vol-
ume of the element e, and solidβ  is the volume frac-
tion of solid. 

As suggested by Sigmund and Clausen [1], the bulk 
modulus K and shear modulus G will be used to rep-
resent the elasticity matrix. Therefore, K and G are 
interpolated as the functions of the element density 
design variables. 

For topology optimization selecting an incom-
pressible solid material state or void state for every 
element, the following interpolation is employed: 

 

( ) ( ) ( )void solid void

p

e eK K K Kρ ρ= + − ,  (21a) 

( ) ( ) ( )void solid void

p

e eG G G Gρ ρ= + − ,  (21b) 

 
with 

 
0 1eρ≤ ≤ , 

where solidK  and solidG  refer to the bulk modulus 
and the shear modulus of the original material, re-
spectively and p denotes the penalty parameter. For 
plane strain problems, the elasticity matrix eC  in Eq. 
(18) in terms of K and G is written as  

 

(22) 

 
Although  should be infinite for incom-

pressible materials, the value of  that is 100 
times larger than  is used to simulate an in-
compressible material. If too large values of solidK  
were used, elements having intermediate density val-
ues would exhibit incompressible behavior; it would 
become difficult to obtain distinct 0-1 density distri-
butions. Bruggi and Venini [2] suggested larger inter-
polation exponents for the bulk modulus than for the 
shear modulus in order to obtain distinct 0-1 results. 
This technique is effective because Poisson’s ratios 
corresponding to intermediate eρ  values are evalu-
ated to be very small and thus intermediate density 
elements do not posses large bulk modulus values. As 
a result, intermediate density elements are not favored 
during the topology optimization process. The use of 
a larger interpolation exponent for the bulk modulus 
than for the shear modulus is also known to be effec-
tive for problems with highly hydrostatic boundary 
conditions [2].  

When designing a rubber-like structure containing 
fluid, instead of selecting void state, selecting fluid 
state should be formulated: 

 
( ) solid fluideK K Kρ = = ,  (23a) 

( ) ( ) ( )fluid solid fluid

p

e eG G G Gρ ρ= + − .  (23b) 

 
In Eqs. (23), because elements in fluid state should 

also have incompressibility, their bulk modulus is set 
to be equal to that of an incompressible material, and 
thus only shear modulus is parameterized. 
 

4. Design examples 

To solve the topology optimization problems de-
scribed in the previous section by a gradient-based 
optimization requires design sensitivity. Because the 
sensitivity analysis for a compliance minimization 
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problem is widely known, it will not be repeated here 
(see, e.g., Reference [17]). As an optimizer, the 
method of moving asymptotes by Svanberg [18] is 
used. To suppress the appearance of members with 
small sizes, the standard filtering technique [17] is 
used. Although the nonconforming elements are 
known to have the checkerboard-free property, mem-
bers with small sizes could not be controlled in the 
test problems considered. Because a filter radius af-
fects member sizes, small-sized members can be ef-
fectively suppressed with filters. After the conver-
gence behavior of the nonconforming finite element 
based topology optimization with existing design 
examples is checked, the designs of a fluid-filled rub-
ber will be solved. For lθ  in Eq. (2), we used the 
basis functions with 2l =  for all problems solved 
here. 

 
4.1 Verification with existing examples 

Fig. 5 illustrates a bridge-like design domain with a 
center load. This problem was solved by Bruggi and 
Venini [2] using a mixed finite element approach. 
The domain boundaries interfacing with the hatch are 
fixed. The compliance minimization problem was 
solved for the two cases: a compressible material with 

1E =  and 0.25ν =  ( solid 0.8K =  and 
solid 0.4G = ) 

and an incompressible material with 1E =  and 
0.5ν ≈  ( solid 100K =  and solid 0.333G = ). In Eqs. 

(21), void void 0.001K G= =  and 3p =  were used. 

The volume usage was constrained to be smaller than 
35% of the design domain. Only half of the domain 
was analyzed with an 80 80×  mesh. Therefore, 
6,400 design variables were used for optimization. 

The optimized results for compressible and incom-
pressible materials are shown in Figs. 6 (a) and (b), 
respectively.  

 
 

 
 
Fig. 5. Problem definition of a bridge-like structure. 

Compared to the result for a compressible material, 
the result for an incompressible material has a higher 
upper arch, which indicates the structure takes advan-
tage of material incompressibility. This fact can be 
also checked by examining the optimization value of 
compliance 

optf : 
opt 11.956f =  for the compressi-

ble case and 
opt 9.114f =  for the incompressible  

 

 

 
Fig. 6. Optimization history for the problem in Fig. 3 for (a) 
compressible material (

solid 0.8K = , solid 0.4G = ), and (b) in-
compressible material ( solid 100K = , 

solid 0.333G = ). 
 

 
 
Fig. 7. Problem definition with nearly-isotropic loads (

1 2F = , 

2 1F = ). 
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(b) 

 
Fig. 8. Optimization history for the problem in Fig. 5 for (a) 
compressible material (

solid 0.8K =  and solid 0.4G = ), and (b) 
incompressible material ( solid 30K = , solid 0.333G = ). 

 
case. The present result by the nonconforming dis-
placement-based finite element approach with the 
incompressible material in Fig. 6(b) has almost an 
identical configuration to the result obtained by the 
mixed finite element approach [2]. 

In Fig. 7, a design domain of a structure subject to 
nearly-isotropic loads is illustrated. The material 
properties in the previous problem are used for opti-
mization. A quarter of the design domain is discre-
tized by 80 80×  elements. Because the structure is 
under nearly isotropic loads, the elements apart from 
boundaries have almost the same deformations and 
thus almost the same sensitivities. Therefore, inter-
mediate design variables would appear at the end of 
optimization unless a large penalty value for K is used. 
Also, as was suggested by Bruggi and Venini [2], we 
used different penalty exponents for the bulk and 
shear moduli: 12p =  for the bulk modulus and 

3p =  for the shear modulus in Eqs. (21). 
Fig. 8 compares the optimized results for the vol-

ume constraint of 35%. The optimized layout for a 
compressible material carries the external loads by the 
longitudinal stiffness of straight members that are  

Fig. 9. Problem definition of a fluid-rubber mount. 
 

 

 
Fig. 10. Optimized fluid-rubber mounts: (a) 35%, (b) 45% 
and (c) 60% mass usage of a rubber (black: rubber, white: 
fluid). 



450  G.-W. Jang and Y. Y. Kim / Journal of Mechanical Science and Technology 23 (2009) 442~451 
 

reinforced by an internal circular ring. On the other 
hand, the layout for an incompressible material car-
ries the loads mainly by a larger circular ring because 
of its strong resistance against compressibility. Obvi-
ously, the compliance of the incompressible case, 

opt 51.014f =  turned out to be much smaller than the 
compliance of the compressible case, 

opt 73.432f = . 
 

4.2 Design of a fluid-filled rubber mount 

The design optimization of a rubber mount of 
which internal region may be filled with fluid is now 
considered. Rubber mounts are structural elements to 
support vibrating structures such as engines. Al-
though practical design of rubber mounts requires 
consideration of various factors (see, e.g., References 
[19, 20]), a simplified model will be considered to 
demonstrate the effectiveness of the present approach. 
Fig. 9 shows a design domain surrounded by thin 
rubber layers. The design domain will be filled with 
rubber and fluid. The fluid will be considered as an 
effective means to dissipate vibrating energy of a 
supported structure. The design problem set up here is 
the compliance minimization of the rubber mount 
with given volume ratios of rubber within the design 
domain. On the top edge of the support, a unit pres-
sure is prescribed while the bottom edge is fixed. The 
half of the design domain and the surrounding non-
design domain are discretized by 40 80×  noncon-
forming elements. The interpolation scheme in Eqs. 
(23) is used to represent the rubber or fluid phase. The 
values of solid 100K = , solid 0.3333G = , fluid 100K =  
and fluid 0.001G =  are used for Eqs. (23). 

Fig. 10(a) shows the optimized rubber mount with 
the rubber volume constraint of 35%. The mount 
consists of three major regions, an upper chamber, a 
middle chamber and a lower chamber that are divided 
by arch-like rubber separators. Figs. 10(b) and (c) 
illustrate the optimized rubber mounts for 45% and 
60% volume constraints, respectively. As the rubber 
volume ratio increases, mainly the middle chamber 
region is reinforced. To improve the vibration energy 
dissipation capability of the designed mount, one may 
consider small channels or holes between the fluid 
chambers. In that case, the optimized layouts obtained 
here could be used as good initial designs because 
mounts should have sufficient stiffness in addition to 
energy dissipation capability. The design of engine 
mounts by topology optimization considering energy 
dissipation as well as compliance will be a challeng-

ing problem.  
 

5. Conclusions 

Displacement-based nonconforming elements were 
employed for topological layout design optimization 
involving incompressible materials. Because the ele-
ments are free from the Poisson locking, no special 
technique such as the mixed formulation is needed to 
obtain stable solution convergence. The method was 
tested with new problems to design fluid-filled rubber 
mounts as well as existing design problems. Distinct 
0-1 design variable distributions were obtained and 
stable solution convergence was found for all test 
problems. The locking-free analysis and numerical 
tests confirmed that the nonconforming element-
based topology optimization method can be an effec-
tive alternative to the mixed element based topology 
optimization method.  
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